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ABSTRACT 
 
Applying binaural simulation techniques to structural acoustic data can be very 
computationally intensive as the number of discrete noise sources can be very large. 
Typically, Head Related Transfer Functions (HRTFs) are used to individually filter the 
signals from each of the sources in the acoustic field. Therefore, creating a binaural 
simulation implies the use of potentially hundreds of real time filters. This paper details two 
methods of reducing the number of real-time computations required by: (i) using the singular 
value decomposition (SVD) to reduce the complexity of the HRTFs by breaking them into 
dominant singular values and vectors and (ii) by using equivalent source reduction (ESR) to 
reduce the number of sources to be analyzed in real-time by replacing sources on the scale of 
a structural wavelength with sources on the scale of an acoustic wavelength. The ESR and 
SVD reduction methods can be combined to provide an estimated computation time 
reduction of 99.4% for the structural acoustic data tested. In addition, preliminary tests have 
shown that there is a 97% correlation between the results of the combined reduction methods 
and the results found with the current binaural simulation techniques 
 

INTRODUCTION 
 
Virtual prototyping allows designers to view and analyze prototypes of automobiles, 
airplanes, buildings, etc., using three-dimensional virtual reality technology. This concept of 
virtual prototyping can be extended to include the acoustical properties of a prototype.  For 
example, a three-dimensional audio-visual representation of an aircraft interior would allow 
designers and analysts to test, subjectively, the acoustic sound quality of the aircraft.   
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Unfortunately, the three-dimensional simulation (using binaural techniques) of structural-
acoustic data can be difficult due to the large number of computations required in the 
analysis. The objective of this research has been to reduce the number of real-time 
calculations required in order to create a binaural representation of the acoustic field 
produced by a vibrating structure. Two reduction methods, and their combination, are 
investigated: Singular Value Decomposition (SVD) and Equivalent Source Reduction (ESR). 
SVD reduces the number of real-time computations and ESR performs pre-processing 
calculations that reduce the number of sources, and hence computations. The ESR also 
transforms the data into a format that allows the binaural signals to be calculated using the 
standard Head Related Transfer Functions or HRTFs.  
 
Literature review. A great deal of research has been done on the modeling of HRTFs 
including principal components analysis [1,2], Karhunen-Loeve expansion [3,4], balanced 
model truncation [5], state-space analysis [6,7], representation as spherical harmonics [8,9], 
pole-zero approximation [10,11] and structural modeling [12,13]. Duda [14] presents a 
comprehensive summary of these different HRTF models, which have been researched for 
several reasons: to better understand the properties of HRTFs, to reduce the number of 
measurements required in order to create a full set of individualized HRTFs, and (as with the 
authors’ research) to reduce the number and complexity of real-time calculations.  In 
contrast, the research presented here uses the singular value decomposition (SVD) to model 
the HRTFs.  SVD produces similar results to Principal Components Analysis and Karhunen-
Loeve Expansion, but through a more direct computational method. Abel [15,16] introduced 
SVD as a computational reduction method for binaural simulation, but results regarding the 
accuracy and computational reduction of this method were not discussed. Equivalent source 
reduction (ESR) [17-19] is also used in order to simplify the binaural simulation of a 
distributed source.  
 
This work combines the ESR and SVD methods and applies them to the binaural simulation 
of structural acoustic data. In addition, the reduction methods are implemented and results 
are compared with the computationally exhaustive method in order to determine the accuracy 
and computation time associated with the number of singular values. 
 

THEORY 
 
This section first describes a non-reduced or “exhaustive” method for creating a binaural 
simulation of a vibrating structure. Equivalent source reduction and singular value 
decomposition are then presented as ways to reduce the computation time involved in 
creating the binaural simulation of a vibro-acoustic source. 
 
Calculating Binaural Signals. In order to couple together a model of the radiation of sound 
from a vibrating structure and the HRTFs, the authors have modeled the structure as an array 
of monopoles (acting as equivalent sources). Accordingly, this discussion focuses first on the 
radiation of sound from a monopole, then on sound radiation from a group of monopoles, and 
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finally on sound radiation from a vibrating structure. The use of monopoles is advantageous 
due to their simplicity, uniform directivity and ability to be used directly with HRTFs. 
 
According to Fahy [20] the sound pressure at point R, p(t), due to a uniformly vibrating 
sphere or a monopole in a free field is defined by Eq. (1): 
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where r is the radial distance from the monopole to the measurement point (R), c is the speed 
of sound in air, ρο is the density of air, Q is the volume velocity (Su), S is the surface area of 
the monopole (4πro

2), ro is the radius of the sphere, and u is the normal velocity of the surface 
of the monopole. The rate of change of the volume velocity with respect to time can be 
described by a, the volume acceleration of the source. This relationship means that the sound 
at point R will have a magnitude that varies inversely with the distance r and a time delay 
equal to the time it takes for the sound to reach point R, which is r/c.   
 
Having determined the pressure at point R due to a single monopole source, the pressure 
resulting from a group of monopoles can be calculated as a linear superposition of the 
pressure due to each source.  Equation 2 shows the total pressure, p(t), at point R resulting 
from N monopole sources: 
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where an is the volume acceleration of the nth source and rn represents the distance between 
the nth source and the point R.  
 
The above equation allows a monaural signal (i.e. sound at one point in the field representing 
the center of an observer’s head) to be calculated, but it is now necessary to apply HRTFs in 
order to determine the binaural signals. HRTFs are functions of time (or frequency), angle, 
and distance. The angular position is defined by the elevation angle, φ, and the azimuth 
angle, θ, between the sound source and the center of the head (see Fig. 1). Because the 
authors use HRTFs [21] that were measured using 
sound sources that were each placed at a uniform 
(and relatively large) distance from the head (i.e. 
assumes plane waves), they are not considered a 
function of distance. The sound attenuation and 
delay due to distance are calculated through the 
radiation model (Eq. 2). Also, while each person 
has their own individual HRTFs, this research 
uses a generalized set that were measured by 
researchers at MIT using the Knowles Electronic 
Manikin for Acoustic Research (KEMAR) [21]. 
However, all of the work presented here can 
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Figure 1: Angles relative to the center of 
the observer’s head 



 4

easily be applied to any set of individualized HRTFs. 
 
The binaural signals can be found by convolving the monaural signal with the appropriate 
Head Related Impulse Response (HRIR), which is the time domain version of the HRTF.  
However, since the HRIRs depend on direction, the monaural signal representing the 
vibrating structure (p(t) from Eq. 2) cannot be directly convolved with a single HRIR.  
Instead, the signal from each monopole must be convolved with its corresponding HRIR. For 
example the contribution, pLn, to the sound pressure at the left ear due to the nth source can be 
calculated as: 

∫
∞

−=
0

)(),,()( τττφθ dtpHtp nnnLLn  

where HL is the HRIR for the left ear, and τ is a temporal variable.  The pressure, pn, resulting 
from the nth monopole at angles θn, φn with respect to the head, represents the pressure at the 
center of the head if the head were not present. A similar equation can be written to describe 
the response at the right ear. The left and right signals contain all of the binaural information 
necessary to recreate a binaural simulation.   
 
Since the binaural signals are calculated using a computer, the convolution of Eq. 3 is 
performed on discrete sampled signals rather than continuous ones.   
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where M is the number of taps used in the HRIR finite impulse response (FIR) filter 
representation and i is the ith discrete time step. This representation assumes that there will be 
a different HRIR filter for every angle. In reality a finite set of angles (spaced every 1 degree 
for example) are used and the filter closest to the true angle is used in the calculation. 
 
The resulting left ear channel of the binaural signal, pL, from the set of monopoles 
(representing the vibrating structure) is found by summing the pressure contributions from 
each monopole:  
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Note that this is a double summation requiring roughly NM multiply and add calculations 
every time step. Using this equation directly without modification will be termed the 
exhaustive method. 
 
Equivalent Sources. In order to describe the vibration of a structure the measurement 
positions (or nodes) must be spaced at distances less than half of a structural wavelength 
(considerably less if possible). For thin panels, typically found in aircraft and cars, this can 
result in a huge number of points required to describe the vibration of the source. To 
overcome this, an equivalent source technique can be used to both reduce the number of 
sources or nodes (and hence computations), account for the non-planar geometry of the 
source and more generally convert the acoustic data into a format where fast real time 
binaural computations can be performed (i.e. make use of Eq. 5). 

(3) 

(4) 

(5) 
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It is important to note that all of the equivalent source calculations are done in a pre-
processing stage, with the end result of these calculations being a reduced set of input 
monopole sources strengths acting as if in a free-field. The assumption is that the vibration of 
the structure has been measured or calculated at 
a sufficiently large number of positions on the 
surface and is known a priori. 
 
Figure 2 shows how the ESR method is 
accomplished by creating an evaluation surface, 
SE, that surrounds the vibrating surface, S0.  SE is 
evenly covered by an array of Q evaluation 
points where Q is large enough to accurately 
describe the velocity of the evaluation surface 
and prevent ill conditioning [17].  If SE is placed 
even a small distance from the vibrating surface 
S0 then it will not be affected by the non-
radiating or subsonic components on S0 since the 
air gap acts as a natural low pass wavenumber 
filter (i.e. oscillation with wavenumbers larger 
than the wavenumber in air, decay exponentially 
with distance from S). 
 
In this analysis the problem will be formulated in the frequency domain (for simplicity) and 
then converted into the time domain for real time implementation. This is possible because 
the analysis is all performed in a preprocessing stage. At a single frequency ω the complex 
particle velocity v(ω), normal to the surface SE, due to the original distributed source can be 
calculated using boundary element and/or finite element techniques, or in the case of a planar 
surface in a baffle using the Rayleigh integral. v(ω) can also be calculated directly from the N 
length vector of measured (or calculated) accelerations a(ω) using a transfer matrix approach. 

)()()( ωωω aTv =  
where T is an Q by N matrix of complex transfer functions between the Q measurement 
positions on the structure and the normal velocity at each evaluation position. Similarly, the 
normal particle velocity on the evaluation surface due to a reduced set of NE equivalent 
sources can be calculated as, 

)()()( ωωω EE aTv E=  
where TE is an Q by NE matrix of complex transfer functions relating the normal particle 
velocity at each evaluation point to the acceleration of each equivalent monopole source and 
is calculated using the equations for radiation from a monopole acting in a free-field [17]. As 
long as the set of equivalent sources, of acceleration aE(ω), is driven such that it creates a 
particle velocity vE(ω) normal to the surface SE that is the same (or very similar) to the 
velocity v(ω), then the acoustic field outside the surface SE will be the same as the original 
field. This can be deduced from the Kirchoff-Helmholtz equation [17, 22] assuming that 
there are no other sources acting in the field. The Kirchoff-Helmholtz equation requires that 
both the velocity and pressure at a surface be specified in order to calculate the acoustic field. 

(6) 

SE

Measurement points
Equivalent source
Evaluation positions

SO Observer

SE

Measurement points
Equivalent source
Evaluation positions

SO Observer

Figure 2: A reduced number of equivalent 
sources used to represent the radiation 
from a vibrating structure S0 
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However, these quantities are not independent and “the pressure field is everywhere uniquely 
determined by a specified distribution of surface velocity” (from Fahy [22]). So as long as 
the velocity distribution on the surface SE is correctly re-created the pressure field at the 
surface will also be correctly re-created. The equivalent source method circumvents the 
direct use of the Kirchoff-Helmholtz equation by matching the conditions at the boundary 
and the free-field Green’s function (Eq. 1) can be directly used with the equivalent source 
strengths to calculate the pressure anywhere in the acoustic field outside the surface SE. 
 
In order to find the acceleration aE(ω) that minimizes the difference between the true velocity 
v and the simulated velocity vE(ω) an error minimization method, typically used in active 
control [17], is employed.  

[ ] )()()()()()()()( ωωωωωωωω aCaTTTTa H
E

1
E

H
EE == −  

This will minimize the difference (in a least squares sense) between v(ω) and vE(ω) [17].  
Therefore, the NE by N matrix C(ω) is a matrix that converts the N original accelerations into 
NE accelerations that most accurately represent the radiation from the surface. This process 
can be conducted over a range of frequencies to build up a NE by N matrix of filters in the 
frequency domain. The conversion matrix C(ω) can then be transformed into the time 
domain using an inverse Fourier transform (to create C(t)). Since this conversion is done in a 
pre-processing stage the time domain filters contained in C(t) are not constrained to be 
causal. The N time domain acceleration signals can then be filtered through C(t) to produce 
NE equivalent accelerations that can be directly used in Eqs. 2 and 5. It should be noted that 
once this is done the equivalent set of monopoles act as if in a free-field. 
 
If the radiation is into an enclosed space the equivalent sources can still be used to represent 
the radiation from the structure [17] and will take into account the resonant behavior of the 
enclosure (or equivalently compensate for all of the image sources). The equivalent 
monopole sources will still act as if in a free-field and Eqs. 2 and 5 can still be directly used. 
 
Singular Value Decomposition. In addition to the ESR method, the authors have also 
investigated singular value decomposition [23,15,16] as a reduction method. By breaking 
down the matrix of HRIRs (minimum phase version) into three separate matrices, the number 
of convolutions can be greatly reduced.  Singular value decomposition separates a matrix (in 
this case a matrix of HRIRs) into three separate matrices: 

[ ][ ][ ] TUHRIR V  Σ=  
where HRIRs is an m by n matrix of the HRIRs for every elevation and azimuth angle (in one 
degree steps), U is an m by m unitary matrix of left singular vectors, Σ is an m by n diagonal 
matrix of singular values, and V is an n by n unitary matrix containing right singular vectors. 
While singular value decomposition can also be performed in the frequency domain (i.e., on 
the HRTFs), the following analysis is in the time domain. 
 
The SVD of the HRIR matrix (without time delays) is shown in Fig. 3.  Notice that the left 
singular vector matrix, U, contains angular information for each singular value σk. The 
matrix of singular values is simply a diagonal matrix of singular values that diminish in value 
as k becomes larger. The time information for each singular value is contained in the right 

(9) 
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singular vector matrix. When these three matrices are multiplied together, the matrix of 
HRIRs (without time delays) will be the result. The advantage of SVD is that an approximate 
HRIR matrix can be obtained using only a few singular values (K is small), which is 
important when a large number of sources (N) are analyzed. Equation 5 can be approximated 
using K singular values/vectors as,  
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where Vk is the kth right singular vector or filter, Uk is the kth left singular vector or angular 
dependency. sk is a time domain signal due to all of the sources driving the kth mode or 
singular value. Although this may appear to be adding complexity to the calculation it 
actually represents a significant decrease in computation because the filtering process 
(summation over j) is performed on only K signals instead of N signals. Each time step now 
only requires the computation to calculate s (KN multiply and adds) plus the computations in 
the filtering stage (KM multiply and adds). This represents a significant reduction in 
computation if K is smaller than N (typically M=128). It should be noted that the right 
singular vectors are independent of any motion of the listener (i.e. filters are fixed). 
 
Figure 4 shows the magnitude of the normalized singular values versus singular value 
number for four different frequency ranges (normalized such that the first singular value is 
equal to one).  Notice that as the low-pass filter is applied at successively lower frequencies, 
the number of important singular values also decreases. It is found that only three singular 
values are necessary to create accurate results up to 2500 Hz. 
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Figure 3: Graphical representation of the SVD of a minimum phase HRIR matrix. Left singular 
vectors are “mode shapes” and the right singular vectors are time domain FIR filters. 
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RESULTS 
  
In order to verify the effectiveness of the reduction methods, the authors chose to analyze a 
vibrating plate. This plate is set in a baffle and radiates sound into the free field. This 
structure and configuration was chosen 
for two reasons:  (1) the plate is a 
relatively simple structure to analyze, 
allowing us to focus on the binaural 
processes rather than structural effects; 
and (2) a plate in this configuration is 
essentially the same as a plate secured in 
a baffle, radiating sound into an 
anechoic chamber, which can be 
arranged in a typical acoustic laboratory. 
 
Description of Measurements. A 1.415 
m x 1.415 m x 4.9 mm aluminum panel 
that was mounted in the transmission 
loss window of the SALT facility at 
NASA Langley Research Center and 
subjected to mechanical excitation.  
Using a scanning laser vibrometer, 
accelerations were collected by Grosveld [24] over a 23 x 23 grid (so N = 529). Also included 
in the data set are the transfer functions from the input force: to microphones in the anechoic 
chamber, and to two microphones in the left and right ears of NASA’s KEMAR dummy head 
taken for a range of head positions and orientations. This data was used to verify the 
exhaustive method and was discussed in detail in [24, 25]. The authors also used this data to 
compare the reduction methods with the exhaustive method, which will be discussed in the 
following sections. 
 
Results with the Exhaustive Method. With the plate 
measurements collected by Grosveld, the exhaustive method 
(Eq. 5) was used to find the binaural signals for the head and 
plate orientation shown in Fig. 5. This was achieved using a 
numerical form of the Rayleigh integral where the volume 
accelerations used in Eq. 2 were simply the measured 
accelerations times an elemental area. If the accelerations 
used are taken as the impulse responses from the input force 
to the acceleration at the measurement positions, then the 
output of the exhaustive method is the impulse response from 
the input force to the left ear. This calculated impulse 
response was compared with the measured [24] impulse 
response for this same head orientation. The two were found 
to match satisfactorily [25].    

panel

baffle

F
30º

1 mpanel

baffle

F
30º

1 m

Figure 5: Head and plate 
orientation used in 
experiments 
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ESR. An evenly spaced grid of eight by 
eight equivalent sources (i.e., NE = 64) and 
an evenly spaced grid of four by four 
equivalent sources (i.e., NE = 16) were 
used to represent the radiation from the 
plate. The evaluation surface was a 
flattened hemisphere where the radius in 
the plane of the plate was 1.2m, and the 
radius normal to the plate was 0.6m. This 
surface was covered by 884 evenly spaced 
evaluation locations (see Fig. 6). The 
matricies T and TE were calculated using 
the gradient of the pressure calculated 
from Eq. 2 [17]. 
 
Figure 7 shows the frequency domain comparison of the pressure at a listener’s left ear due to 
an impulsive point force driving the plate when 529 (exhaustive), 64, and 16 sources were 
used in the calculation.  For this and all the following comparisons, the head and plate are 
configured according to Fig. 5.  The decrease in accuracy above 1000 Hz (64 source case) is 
because the spacing of the equivalent sources becomes less than half an acoustic wavelength 
above 980 Hz. At times when only lower frequencies are important, a fewer number of 
equivalent sources can be used.  For example, when only 16 sources are used, the ESR 
method is accurate up to 490 Hz. If frequencies up to 800Hz are of interest then the ESR 
method (with 64 sources) yields an excellent correlation of 98.4% in the time domain.  
 
SVD. Figure 8 shows the 
beginning of the impulse response 
from the input force to the left ear 
as it is calculated with the 
exhaustive (529 sources) and 
SVD methods (only three singular 
values used). Since the collected 
data is good only up to 2000 Hz 
(due to the measurement spacing 
[25]), a low-pass filter at 1600 Hz 
was applied. The correlation 
between the SVD and exhaustive 
methods was 97.7%, while using 
only three singular values.  From 
this result the authors concluded 
that only three singular values are 
necessary to make SVD an 
accurate reduction method for the 
frequency range of interest.  
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Combined ESR and SVD. Since 
the ESR method works to reduce 
the number of input sources while 
the SVD method changes how 
HRIRs are applied, the two 
methods can be used 
simultaneously to yield an even 
greater reduction in computation 
time.  Figure 9 shows a time 
domain comparison of the 
combined reduction methods and 
the exhaustive method.  In this 
case, three singular values and 64 
equivalent sources were used.  
Because the ESR method for 64 
sources is accurate only up to 980 
Hz, a low-pass filter at 800 Hz was 
applied.  A correlation of 97% was 
found between the combined 
reduction method and the 
exhaustive method.   
 
Computation comparisons. 
Since the radiation model 
process (Eq. 2) is a scalar 
multiplication (1/r), the number 
of computations is modeled to 
be N multiplications.  Because 
convolution is required in the 
process of filtering the radiated 
pressure with the HRTFs (Eq. 
5), the number of computations 
required will be MN 
multiplications plus MN 
additions (where M=128 is the 
number of samples in the HRIRs 
from MIT). Similarly, the 
additions required to sum the 
signal are counted as N 
summations.  In this model, 
addition and multiplication are estimated to require approximately the same amount of 
computation time.  Adding up the number of summations and multiplications required by the 
exhaustive method yields a total of CEX=(2M+2)N computations for each ear. This same 
equation is accurate for the ESR method as well. The only difference is found in the number 

Figure 9: Beginning of the impulse response (low-pass at 800Hz) 
between the input force and the sound at the left ear calculated 
using the exhaustive method (full HRIR matrix and 529 sources) 
and using only 64 equivalent sources and the first 3 singular 
values 
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of sources (N).  Notice from Table 1 that there is an obvious reduction in computation time 
achieved using the ESR method, but there is a tradeoff involving the frequency range of 
accuracy.  
 
For the SVD method the computations required by the radiation model, though, are the same 
as with the ESR method:  N multiplications.  Multiplying the left singular vector, Uk, requires 
N multiplications for each of the K singular values, which is KN multiplications.  By the 
same reasoning, the summing process requires MN summations.  Since the convolution 
occurs after the summing process in the SVD method, only MK multiplications and MK 
additions are required.  The scalar multiplication of the singular values is not included in the 
number of computations because it can be multiplied by the right singular vectors in pre-
processing. The total number of computations is CSVD=N + 2KN + (2M+1)K.  Table 1 offers 
a comparison of the computation time associated with each method. 
 
This reduction in computation time is 
important in order to create a real-time 
binaural simulation of structural 
acoustic data.  In a real-time virtual 
environment, the user’s head 
orientation is measured by a head-
tracking unit and read by the 
computer.  Typical update rates for 
head-tracking units are 100 Hz, 
corresponding to one update every 10 
ms. Until the computer receives 
another head orientation from the 
head-tracking unit, the left and right ear signals are calculated based upon the current head 
orientation. However, in audio systems the audio is typically updated at a sample rate of 
44100 samples/second.  This means that in order to create a structural acoustics simulation 
using the exhaustive method, the computer must make an estimated 136,482 calculations per 
ear in about 23 µs.  With the combined reduction methods, only 883 calculations are required 
per ear in the same amount of time. This is an estimated computation time reduction of 
99.4%, making real-time binaural analysis of structural acoustic data much more feasible. 

 
CONCLUSIONS 

 
The binaural simulation of structural acoustic data is a promising technology that is currently 
hampered by the extensive computations that are required.  This paper has shown that 
singular value decomposition and equivalent source reduction can be employed 
simultaneously in the binaural simulation and, for this example, can reduce the number of 
real-time computations by 99.4%. In addition, these reduction methods are used while 
maintaining an accuracy of 97%, over the frequency range of interest, when compared with 
the exhaustive method. This work thus forms the foundation for implementation in a real-
time filtering system. The only limiting factor with either method is that the ESR method has 
a frequency range of accuracy that depends upon the spacing of the equivalent sources.   

Method K N fmax # comps
Exhaustive N/A 529 N/A 136482

ESR N/A 64 980 16512
ESR N/A 16 490 4128
SVD 7 529 N/A 9734
SVD 3 529 N/A 4474

ESR & SVD 7 64 980 2759
ESR & SVD 7 16 490 1911
ESR & SVD 3 64 980 1219
ESR & SVD 3 16 490 883

Table 1: Number of computations required for each ear 
for different simulations (M = 128) 
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Auditory tests will be required to determine if these reduction methods produce satisfactory 
psychoacoustic results.  Also the application of ESR and SVD methods to enclosures and 
sources of complex geometries needs to be validated.  Another important step in this research 
would be to use individualized HRTFs instead of generalized ones. Using individualized 
HRTFs would minimize HRTF error, allowing listeners in auditory tests to distinguish small 
errors in the reduction methods.   
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